Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Lesego J. Moitsheki,* Susan A. Bourne and Luigi R. Nassimbeni

Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa

Correspondence e-mail: mlesego@science.uct.ac.za

Key indicators

Single-crystal X-ray study T = 203 KMean σ (C–C) = 0.009 Å Disorder in main residue R factor = 0.038 wR factor = 0.113 Data-to-parameter ratio = 12.7

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

catena-Poly[[methanoltrinitratothallium(III)]μ-4,4'-bipyridine *N*,*N*'-dioxide]

The title compound, $[Tl(NO_3)_3(C_{10}H_8N_2O_2)(CH_4O)]_n$, has a one-dimensional zigzag chain with nitrate and methanol ligands disordered over two positions.

Received 24 February 2006 Accepted 27 February 2006

Comment

The construction of a thallium(III) coordination polymer using 4,4'-bipyridine N,N'-dioxide (bpdo) as bridging ligand results in a crystal structure analogous to the terbium(III) compound reported by Long *et al.* (2002). We report here the structure of the title coordination polymer, (I); the asymmetric unit is labeled in Fig. 1.

Compound (I) is a one-dimensional zigzag coordination polymer (Fig. 2) in which the Tl^{III} is coordinated by one bpdo, one methanol and three nitrate ligands. The C_2 symmetry of the molecule causes one of the nitrate ligands and the methanol to be disordered over two positions with site-occupancy factors of 0.5. Zigzag polymeric chains run parallel to [101] (Fig. 3). These chains are linked by weak hydrogen bonding through (methanol)C-H···O(nitrate) and C_{ar}-H···O(nitrate). The hydrogen-bonding details are given in Table 1. All nitrate ligands are bidentate, giving ninecoordinate Tl.

Experimental

Compound (I) was prepared by layering a methanol solution of 4,4'bipyridine N,N'-dioxide (0.10 mmol) on top of a layer of CHCl₃ in which 0.05 mmol of Tl(NO₃)₃ had been placed (but not fully dissolved). The layers mixed over several days at ambient temperature and crystals grew at the interface.

© 2006 International Union of Crystallography All rights reserved

Figure 1

Part of the polymeric chain structure of (I) showing the atom labeling. Displacement ellipsoids are drawn at the 50% probability level and H atoms have been omitted for clarity. Atoms of the asymmetric unit are labeled.

1795 reflections with $I > 2\sigma(I)$

 $R_{\rm int}=0.049$

 $\theta_{\rm max} = 27.1^{\circ}$

 $h = -19 \rightarrow 19$

 $k=-10\rightarrow 10$

 $l = -17 \rightarrow 18$

Crystal data

$D_x = 2.251 \text{ Mg m}^{-3}$
Mo $K\alpha$ radiation
Cell parameters from 12558
reflections
$\theta = 1.0-27.5^{\circ}$
$\mu = 9.06 \text{ mm}^{-1}$
T = 203 (2) K
Block, colorless
$0.10 \times 0.10 \times 0.09 \; \mathrm{mm}$

Data collection

Nonius KappaCCD diffractometer ω and φ scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 2001) $T_{min} = 0.405, T_{max} = 0.445$ 12558 measured reflections 1975 independent reflections

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_0^2) + (0.0603P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.038$	+ 12.8828P]
$wR(F^2) = 0.113$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.21	$(\Delta/\sigma)_{\rm max} < 0.001$
1975 reflections	$\Delta \rho_{\rm max} = 0.97 \ {\rm e} \ {\rm \AA}^{-3}$
155 parameters	$\Delta \rho_{\rm min} = -2.18 \text{ e } \text{\AA}^{-3}$
H-atom parameters constrained	

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$ \begin{array}{c} \hline C4-H4\cdots O12^{i} \\ C10-H10A\cdots O16^{ii} \end{array} $	0.94 0.97	2.36 2.40	3.286 (10) 2.90 (2)	169 112
Symmetry codes: (i) x , –	$y, z - \frac{1}{2};$ (ii) -	$x + \frac{1}{2}, y - \frac{1}{2}, -x$	$z + \frac{1}{2}$.	

Methanol and one nitrate group are disordered over two positions, with symmetry-defined site-occupancy factors of 0.50. H atoms were placed in geometrically calculated positions and refined using a riding model, with C-H = 0.94 (aromatic) and 0.97 Å (methanol), with $U_{\rm iso}({\rm H}) = 1.2U_{\rm eq}({\rm aromatic C})$ and $1.5U_{\rm eq}({\rm methanol C})$. All non-H atoms were refined anisotropically, except for O9 of the disordered

Figure 2 The zigzag polymeric chain in (I).

Figure 3

Packing of compound (I), viewed along [010], showing hydrogen bonds (dashed lines) and polymeric chains running parallel to [101].

methanol. The deepest residual electron-density hole is 0.87 Å from the Tl atom.

Data collection: *COLLECT* (Nonius, 1998); cell refinement: *DENZO* (Otwinowski & Minor, 1997); data reduction: *DENZO*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *X-SEED* (Barbour, 2001) and *POV-RAY* (Persistence of Vision, 1999); software used to prepare material for publication: *SHELXL97*.

We thank the South African National Research Foundation (No. FA2004032500017), the University of Cape Town Research Committee and the CSIR (LJM) for financial support.

References

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.

Long, D.-L., Blake, A. J., Champness, N. R., Wilson, C. & Schröder, M. (2002). *Chem. Eur. J.* 8, 2026–2033.

Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.

- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Persistence of Vision (1999). POV-RAY. Version 3.1e. (URL: http:// www.povray.org/).
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Sheldrick, G. M. (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.